Copied to
clipboard

G = C23.45D28order 448 = 26·7

16th non-split extension by C23 of D28 acting via D28/D14=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C23.45D28, C24.49D14, C14.44(C4×D4), (C2×Dic7)⋊17D4, C23.26(C4×D7), C221(D14⋊C4), C14.32C22≀C2, (C23×Dic7)⋊1C2, (C22×C4).33D14, C22.44(C2×D28), (C22×C14).68D4, C22.103(D4×D7), C2.5(C22⋊D28), C14.86(C4⋊D4), C73(C23.23D4), C23.36(C7⋊D4), C14.C4216C2, C2.4(Dic7⋊D4), (C22×C28).26C22, (C23×C14).41C22, (C23×D7).14C22, C23.285(C22×D7), C2.29(Dic74D4), C22.50(D42D7), (C22×C14).332C23, C2.5(C22.D28), C14.33(C22.D4), (C22×Dic7).186C22, (C2×C7⋊D4)⋊6C4, (C2×D14⋊C4)⋊6C2, (C2×C22⋊C4)⋊5D7, (C14×C22⋊C4)⋊3C2, C2.10(C2×D14⋊C4), (C2×Dic7)⋊6(C2×C4), (C22×D7)⋊4(C2×C4), C22.129(C2×C4×D7), (C2×C14)⋊2(C22⋊C4), (C2×C14).324(C2×D4), C14.37(C2×C22⋊C4), (C22×C7⋊D4).4C2, C22.53(C2×C7⋊D4), (C22×C14).55(C2×C4), (C2×C14).147(C4○D4), (C2×C14).111(C22×C4), SmallGroup(448,492)

Series: Derived Chief Lower central Upper central

C1C2×C14 — C23.45D28
C1C7C14C2×C14C22×C14C23×D7C22×C7⋊D4 — C23.45D28
C7C2×C14 — C23.45D28
C1C23C2×C22⋊C4

Generators and relations for C23.45D28
 G = < a,b,c,d,e | a2=b2=c2=d28=1, e2=b, ab=ba, dad-1=ac=ca, ae=ea, bc=cb, bd=db, be=eb, cd=dc, ce=ec, ede-1=bd-1 >

Subgroups: 1428 in 286 conjugacy classes, 83 normal (25 characteristic)
C1, C2, C2, C2, C4, C22, C22, C22, C7, C2×C4, D4, C23, C23, C23, D7, C14, C14, C14, C22⋊C4, C22×C4, C22×C4, C2×D4, C24, C24, Dic7, C28, D14, C2×C14, C2×C14, C2×C14, C2.C42, C2×C22⋊C4, C2×C22⋊C4, C23×C4, C22×D4, C2×Dic7, C2×Dic7, C7⋊D4, C2×C28, C22×D7, C22×D7, C22×C14, C22×C14, C22×C14, C23.23D4, D14⋊C4, C7×C22⋊C4, C22×Dic7, C22×Dic7, C22×Dic7, C2×C7⋊D4, C2×C7⋊D4, C22×C28, C23×D7, C23×C14, C14.C42, C2×D14⋊C4, C14×C22⋊C4, C23×Dic7, C22×C7⋊D4, C23.45D28
Quotients: C1, C2, C4, C22, C2×C4, D4, C23, D7, C22⋊C4, C22×C4, C2×D4, C4○D4, D14, C2×C22⋊C4, C4×D4, C22≀C2, C4⋊D4, C22.D4, C4×D7, D28, C7⋊D4, C22×D7, C23.23D4, D14⋊C4, C2×C4×D7, C2×D28, D4×D7, D42D7, C2×C7⋊D4, Dic74D4, C22⋊D28, C22.D28, C2×D14⋊C4, Dic7⋊D4, C23.45D28

Smallest permutation representation of C23.45D28
On 224 points
Generators in S224
(1 101)(2 133)(3 103)(4 135)(5 105)(6 137)(7 107)(8 139)(9 109)(10 113)(11 111)(12 115)(13 85)(14 117)(15 87)(16 119)(17 89)(18 121)(19 91)(20 123)(21 93)(22 125)(23 95)(24 127)(25 97)(26 129)(27 99)(28 131)(29 210)(30 188)(31 212)(32 190)(33 214)(34 192)(35 216)(36 194)(37 218)(38 196)(39 220)(40 170)(41 222)(42 172)(43 224)(44 174)(45 198)(46 176)(47 200)(48 178)(49 202)(50 180)(51 204)(52 182)(53 206)(54 184)(55 208)(56 186)(57 187)(58 211)(59 189)(60 213)(61 191)(62 215)(63 193)(64 217)(65 195)(66 219)(67 169)(68 221)(69 171)(70 223)(71 173)(72 197)(73 175)(74 199)(75 177)(76 201)(77 179)(78 203)(79 181)(80 205)(81 183)(82 207)(83 185)(84 209)(86 164)(88 166)(90 168)(92 142)(94 144)(96 146)(98 148)(100 150)(102 152)(104 154)(106 156)(108 158)(110 160)(112 162)(114 161)(116 163)(118 165)(120 167)(122 141)(124 143)(126 145)(128 147)(130 149)(132 151)(134 153)(136 155)(138 157)(140 159)
(1 101)(2 102)(3 103)(4 104)(5 105)(6 106)(7 107)(8 108)(9 109)(10 110)(11 111)(12 112)(13 85)(14 86)(15 87)(16 88)(17 89)(18 90)(19 91)(20 92)(21 93)(22 94)(23 95)(24 96)(25 97)(26 98)(27 99)(28 100)(29 210)(30 211)(31 212)(32 213)(33 214)(34 215)(35 216)(36 217)(37 218)(38 219)(39 220)(40 221)(41 222)(42 223)(43 224)(44 197)(45 198)(46 199)(47 200)(48 201)(49 202)(50 203)(51 204)(52 205)(53 206)(54 207)(55 208)(56 209)(57 187)(58 188)(59 189)(60 190)(61 191)(62 192)(63 193)(64 194)(65 195)(66 196)(67 169)(68 170)(69 171)(70 172)(71 173)(72 174)(73 175)(74 176)(75 177)(76 178)(77 179)(78 180)(79 181)(80 182)(81 183)(82 184)(83 185)(84 186)(113 160)(114 161)(115 162)(116 163)(117 164)(118 165)(119 166)(120 167)(121 168)(122 141)(123 142)(124 143)(125 144)(126 145)(127 146)(128 147)(129 148)(130 149)(131 150)(132 151)(133 152)(134 153)(135 154)(136 155)(137 156)(138 157)(139 158)(140 159)
(1 151)(2 152)(3 153)(4 154)(5 155)(6 156)(7 157)(8 158)(9 159)(10 160)(11 161)(12 162)(13 163)(14 164)(15 165)(16 166)(17 167)(18 168)(19 141)(20 142)(21 143)(22 144)(23 145)(24 146)(25 147)(26 148)(27 149)(28 150)(29 57)(30 58)(31 59)(32 60)(33 61)(34 62)(35 63)(36 64)(37 65)(38 66)(39 67)(40 68)(41 69)(42 70)(43 71)(44 72)(45 73)(46 74)(47 75)(48 76)(49 77)(50 78)(51 79)(52 80)(53 81)(54 82)(55 83)(56 84)(85 116)(86 117)(87 118)(88 119)(89 120)(90 121)(91 122)(92 123)(93 124)(94 125)(95 126)(96 127)(97 128)(98 129)(99 130)(100 131)(101 132)(102 133)(103 134)(104 135)(105 136)(106 137)(107 138)(108 139)(109 140)(110 113)(111 114)(112 115)(169 220)(170 221)(171 222)(172 223)(173 224)(174 197)(175 198)(176 199)(177 200)(178 201)(179 202)(180 203)(181 204)(182 205)(183 206)(184 207)(185 208)(186 209)(187 210)(188 211)(189 212)(190 213)(191 214)(192 215)(193 216)(194 217)(195 218)(196 219)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168)(169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196)(197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224)
(1 193 101 63)(2 62 102 192)(3 191 103 61)(4 60 104 190)(5 189 105 59)(6 58 106 188)(7 187 107 57)(8 84 108 186)(9 185 109 83)(10 82 110 184)(11 183 111 81)(12 80 112 182)(13 181 85 79)(14 78 86 180)(15 179 87 77)(16 76 88 178)(17 177 89 75)(18 74 90 176)(19 175 91 73)(20 72 92 174)(21 173 93 71)(22 70 94 172)(23 171 95 69)(24 68 96 170)(25 169 97 67)(26 66 98 196)(27 195 99 65)(28 64 100 194)(29 157 210 138)(30 137 211 156)(31 155 212 136)(32 135 213 154)(33 153 214 134)(34 133 215 152)(35 151 216 132)(36 131 217 150)(37 149 218 130)(38 129 219 148)(39 147 220 128)(40 127 221 146)(41 145 222 126)(42 125 223 144)(43 143 224 124)(44 123 197 142)(45 141 198 122)(46 121 199 168)(47 167 200 120)(48 119 201 166)(49 165 202 118)(50 117 203 164)(51 163 204 116)(52 115 205 162)(53 161 206 114)(54 113 207 160)(55 159 208 140)(56 139 209 158)

G:=sub<Sym(224)| (1,101)(2,133)(3,103)(4,135)(5,105)(6,137)(7,107)(8,139)(9,109)(10,113)(11,111)(12,115)(13,85)(14,117)(15,87)(16,119)(17,89)(18,121)(19,91)(20,123)(21,93)(22,125)(23,95)(24,127)(25,97)(26,129)(27,99)(28,131)(29,210)(30,188)(31,212)(32,190)(33,214)(34,192)(35,216)(36,194)(37,218)(38,196)(39,220)(40,170)(41,222)(42,172)(43,224)(44,174)(45,198)(46,176)(47,200)(48,178)(49,202)(50,180)(51,204)(52,182)(53,206)(54,184)(55,208)(56,186)(57,187)(58,211)(59,189)(60,213)(61,191)(62,215)(63,193)(64,217)(65,195)(66,219)(67,169)(68,221)(69,171)(70,223)(71,173)(72,197)(73,175)(74,199)(75,177)(76,201)(77,179)(78,203)(79,181)(80,205)(81,183)(82,207)(83,185)(84,209)(86,164)(88,166)(90,168)(92,142)(94,144)(96,146)(98,148)(100,150)(102,152)(104,154)(106,156)(108,158)(110,160)(112,162)(114,161)(116,163)(118,165)(120,167)(122,141)(124,143)(126,145)(128,147)(130,149)(132,151)(134,153)(136,155)(138,157)(140,159), (1,101)(2,102)(3,103)(4,104)(5,105)(6,106)(7,107)(8,108)(9,109)(10,110)(11,111)(12,112)(13,85)(14,86)(15,87)(16,88)(17,89)(18,90)(19,91)(20,92)(21,93)(22,94)(23,95)(24,96)(25,97)(26,98)(27,99)(28,100)(29,210)(30,211)(31,212)(32,213)(33,214)(34,215)(35,216)(36,217)(37,218)(38,219)(39,220)(40,221)(41,222)(42,223)(43,224)(44,197)(45,198)(46,199)(47,200)(48,201)(49,202)(50,203)(51,204)(52,205)(53,206)(54,207)(55,208)(56,209)(57,187)(58,188)(59,189)(60,190)(61,191)(62,192)(63,193)(64,194)(65,195)(66,196)(67,169)(68,170)(69,171)(70,172)(71,173)(72,174)(73,175)(74,176)(75,177)(76,178)(77,179)(78,180)(79,181)(80,182)(81,183)(82,184)(83,185)(84,186)(113,160)(114,161)(115,162)(116,163)(117,164)(118,165)(119,166)(120,167)(121,168)(122,141)(123,142)(124,143)(125,144)(126,145)(127,146)(128,147)(129,148)(130,149)(131,150)(132,151)(133,152)(134,153)(135,154)(136,155)(137,156)(138,157)(139,158)(140,159), (1,151)(2,152)(3,153)(4,154)(5,155)(6,156)(7,157)(8,158)(9,159)(10,160)(11,161)(12,162)(13,163)(14,164)(15,165)(16,166)(17,167)(18,168)(19,141)(20,142)(21,143)(22,144)(23,145)(24,146)(25,147)(26,148)(27,149)(28,150)(29,57)(30,58)(31,59)(32,60)(33,61)(34,62)(35,63)(36,64)(37,65)(38,66)(39,67)(40,68)(41,69)(42,70)(43,71)(44,72)(45,73)(46,74)(47,75)(48,76)(49,77)(50,78)(51,79)(52,80)(53,81)(54,82)(55,83)(56,84)(85,116)(86,117)(87,118)(88,119)(89,120)(90,121)(91,122)(92,123)(93,124)(94,125)(95,126)(96,127)(97,128)(98,129)(99,130)(100,131)(101,132)(102,133)(103,134)(104,135)(105,136)(106,137)(107,138)(108,139)(109,140)(110,113)(111,114)(112,115)(169,220)(170,221)(171,222)(172,223)(173,224)(174,197)(175,198)(176,199)(177,200)(178,201)(179,202)(180,203)(181,204)(182,205)(183,206)(184,207)(185,208)(186,209)(187,210)(188,211)(189,212)(190,213)(191,214)(192,215)(193,216)(194,217)(195,218)(196,219), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168)(169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196)(197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224), (1,193,101,63)(2,62,102,192)(3,191,103,61)(4,60,104,190)(5,189,105,59)(6,58,106,188)(7,187,107,57)(8,84,108,186)(9,185,109,83)(10,82,110,184)(11,183,111,81)(12,80,112,182)(13,181,85,79)(14,78,86,180)(15,179,87,77)(16,76,88,178)(17,177,89,75)(18,74,90,176)(19,175,91,73)(20,72,92,174)(21,173,93,71)(22,70,94,172)(23,171,95,69)(24,68,96,170)(25,169,97,67)(26,66,98,196)(27,195,99,65)(28,64,100,194)(29,157,210,138)(30,137,211,156)(31,155,212,136)(32,135,213,154)(33,153,214,134)(34,133,215,152)(35,151,216,132)(36,131,217,150)(37,149,218,130)(38,129,219,148)(39,147,220,128)(40,127,221,146)(41,145,222,126)(42,125,223,144)(43,143,224,124)(44,123,197,142)(45,141,198,122)(46,121,199,168)(47,167,200,120)(48,119,201,166)(49,165,202,118)(50,117,203,164)(51,163,204,116)(52,115,205,162)(53,161,206,114)(54,113,207,160)(55,159,208,140)(56,139,209,158)>;

G:=Group( (1,101)(2,133)(3,103)(4,135)(5,105)(6,137)(7,107)(8,139)(9,109)(10,113)(11,111)(12,115)(13,85)(14,117)(15,87)(16,119)(17,89)(18,121)(19,91)(20,123)(21,93)(22,125)(23,95)(24,127)(25,97)(26,129)(27,99)(28,131)(29,210)(30,188)(31,212)(32,190)(33,214)(34,192)(35,216)(36,194)(37,218)(38,196)(39,220)(40,170)(41,222)(42,172)(43,224)(44,174)(45,198)(46,176)(47,200)(48,178)(49,202)(50,180)(51,204)(52,182)(53,206)(54,184)(55,208)(56,186)(57,187)(58,211)(59,189)(60,213)(61,191)(62,215)(63,193)(64,217)(65,195)(66,219)(67,169)(68,221)(69,171)(70,223)(71,173)(72,197)(73,175)(74,199)(75,177)(76,201)(77,179)(78,203)(79,181)(80,205)(81,183)(82,207)(83,185)(84,209)(86,164)(88,166)(90,168)(92,142)(94,144)(96,146)(98,148)(100,150)(102,152)(104,154)(106,156)(108,158)(110,160)(112,162)(114,161)(116,163)(118,165)(120,167)(122,141)(124,143)(126,145)(128,147)(130,149)(132,151)(134,153)(136,155)(138,157)(140,159), (1,101)(2,102)(3,103)(4,104)(5,105)(6,106)(7,107)(8,108)(9,109)(10,110)(11,111)(12,112)(13,85)(14,86)(15,87)(16,88)(17,89)(18,90)(19,91)(20,92)(21,93)(22,94)(23,95)(24,96)(25,97)(26,98)(27,99)(28,100)(29,210)(30,211)(31,212)(32,213)(33,214)(34,215)(35,216)(36,217)(37,218)(38,219)(39,220)(40,221)(41,222)(42,223)(43,224)(44,197)(45,198)(46,199)(47,200)(48,201)(49,202)(50,203)(51,204)(52,205)(53,206)(54,207)(55,208)(56,209)(57,187)(58,188)(59,189)(60,190)(61,191)(62,192)(63,193)(64,194)(65,195)(66,196)(67,169)(68,170)(69,171)(70,172)(71,173)(72,174)(73,175)(74,176)(75,177)(76,178)(77,179)(78,180)(79,181)(80,182)(81,183)(82,184)(83,185)(84,186)(113,160)(114,161)(115,162)(116,163)(117,164)(118,165)(119,166)(120,167)(121,168)(122,141)(123,142)(124,143)(125,144)(126,145)(127,146)(128,147)(129,148)(130,149)(131,150)(132,151)(133,152)(134,153)(135,154)(136,155)(137,156)(138,157)(139,158)(140,159), (1,151)(2,152)(3,153)(4,154)(5,155)(6,156)(7,157)(8,158)(9,159)(10,160)(11,161)(12,162)(13,163)(14,164)(15,165)(16,166)(17,167)(18,168)(19,141)(20,142)(21,143)(22,144)(23,145)(24,146)(25,147)(26,148)(27,149)(28,150)(29,57)(30,58)(31,59)(32,60)(33,61)(34,62)(35,63)(36,64)(37,65)(38,66)(39,67)(40,68)(41,69)(42,70)(43,71)(44,72)(45,73)(46,74)(47,75)(48,76)(49,77)(50,78)(51,79)(52,80)(53,81)(54,82)(55,83)(56,84)(85,116)(86,117)(87,118)(88,119)(89,120)(90,121)(91,122)(92,123)(93,124)(94,125)(95,126)(96,127)(97,128)(98,129)(99,130)(100,131)(101,132)(102,133)(103,134)(104,135)(105,136)(106,137)(107,138)(108,139)(109,140)(110,113)(111,114)(112,115)(169,220)(170,221)(171,222)(172,223)(173,224)(174,197)(175,198)(176,199)(177,200)(178,201)(179,202)(180,203)(181,204)(182,205)(183,206)(184,207)(185,208)(186,209)(187,210)(188,211)(189,212)(190,213)(191,214)(192,215)(193,216)(194,217)(195,218)(196,219), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168)(169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196)(197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224), (1,193,101,63)(2,62,102,192)(3,191,103,61)(4,60,104,190)(5,189,105,59)(6,58,106,188)(7,187,107,57)(8,84,108,186)(9,185,109,83)(10,82,110,184)(11,183,111,81)(12,80,112,182)(13,181,85,79)(14,78,86,180)(15,179,87,77)(16,76,88,178)(17,177,89,75)(18,74,90,176)(19,175,91,73)(20,72,92,174)(21,173,93,71)(22,70,94,172)(23,171,95,69)(24,68,96,170)(25,169,97,67)(26,66,98,196)(27,195,99,65)(28,64,100,194)(29,157,210,138)(30,137,211,156)(31,155,212,136)(32,135,213,154)(33,153,214,134)(34,133,215,152)(35,151,216,132)(36,131,217,150)(37,149,218,130)(38,129,219,148)(39,147,220,128)(40,127,221,146)(41,145,222,126)(42,125,223,144)(43,143,224,124)(44,123,197,142)(45,141,198,122)(46,121,199,168)(47,167,200,120)(48,119,201,166)(49,165,202,118)(50,117,203,164)(51,163,204,116)(52,115,205,162)(53,161,206,114)(54,113,207,160)(55,159,208,140)(56,139,209,158) );

G=PermutationGroup([[(1,101),(2,133),(3,103),(4,135),(5,105),(6,137),(7,107),(8,139),(9,109),(10,113),(11,111),(12,115),(13,85),(14,117),(15,87),(16,119),(17,89),(18,121),(19,91),(20,123),(21,93),(22,125),(23,95),(24,127),(25,97),(26,129),(27,99),(28,131),(29,210),(30,188),(31,212),(32,190),(33,214),(34,192),(35,216),(36,194),(37,218),(38,196),(39,220),(40,170),(41,222),(42,172),(43,224),(44,174),(45,198),(46,176),(47,200),(48,178),(49,202),(50,180),(51,204),(52,182),(53,206),(54,184),(55,208),(56,186),(57,187),(58,211),(59,189),(60,213),(61,191),(62,215),(63,193),(64,217),(65,195),(66,219),(67,169),(68,221),(69,171),(70,223),(71,173),(72,197),(73,175),(74,199),(75,177),(76,201),(77,179),(78,203),(79,181),(80,205),(81,183),(82,207),(83,185),(84,209),(86,164),(88,166),(90,168),(92,142),(94,144),(96,146),(98,148),(100,150),(102,152),(104,154),(106,156),(108,158),(110,160),(112,162),(114,161),(116,163),(118,165),(120,167),(122,141),(124,143),(126,145),(128,147),(130,149),(132,151),(134,153),(136,155),(138,157),(140,159)], [(1,101),(2,102),(3,103),(4,104),(5,105),(6,106),(7,107),(8,108),(9,109),(10,110),(11,111),(12,112),(13,85),(14,86),(15,87),(16,88),(17,89),(18,90),(19,91),(20,92),(21,93),(22,94),(23,95),(24,96),(25,97),(26,98),(27,99),(28,100),(29,210),(30,211),(31,212),(32,213),(33,214),(34,215),(35,216),(36,217),(37,218),(38,219),(39,220),(40,221),(41,222),(42,223),(43,224),(44,197),(45,198),(46,199),(47,200),(48,201),(49,202),(50,203),(51,204),(52,205),(53,206),(54,207),(55,208),(56,209),(57,187),(58,188),(59,189),(60,190),(61,191),(62,192),(63,193),(64,194),(65,195),(66,196),(67,169),(68,170),(69,171),(70,172),(71,173),(72,174),(73,175),(74,176),(75,177),(76,178),(77,179),(78,180),(79,181),(80,182),(81,183),(82,184),(83,185),(84,186),(113,160),(114,161),(115,162),(116,163),(117,164),(118,165),(119,166),(120,167),(121,168),(122,141),(123,142),(124,143),(125,144),(126,145),(127,146),(128,147),(129,148),(130,149),(131,150),(132,151),(133,152),(134,153),(135,154),(136,155),(137,156),(138,157),(139,158),(140,159)], [(1,151),(2,152),(3,153),(4,154),(5,155),(6,156),(7,157),(8,158),(9,159),(10,160),(11,161),(12,162),(13,163),(14,164),(15,165),(16,166),(17,167),(18,168),(19,141),(20,142),(21,143),(22,144),(23,145),(24,146),(25,147),(26,148),(27,149),(28,150),(29,57),(30,58),(31,59),(32,60),(33,61),(34,62),(35,63),(36,64),(37,65),(38,66),(39,67),(40,68),(41,69),(42,70),(43,71),(44,72),(45,73),(46,74),(47,75),(48,76),(49,77),(50,78),(51,79),(52,80),(53,81),(54,82),(55,83),(56,84),(85,116),(86,117),(87,118),(88,119),(89,120),(90,121),(91,122),(92,123),(93,124),(94,125),(95,126),(96,127),(97,128),(98,129),(99,130),(100,131),(101,132),(102,133),(103,134),(104,135),(105,136),(106,137),(107,138),(108,139),(109,140),(110,113),(111,114),(112,115),(169,220),(170,221),(171,222),(172,223),(173,224),(174,197),(175,198),(176,199),(177,200),(178,201),(179,202),(180,203),(181,204),(182,205),(183,206),(184,207),(185,208),(186,209),(187,210),(188,211),(189,212),(190,213),(191,214),(192,215),(193,216),(194,217),(195,218),(196,219)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168),(169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196),(197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224)], [(1,193,101,63),(2,62,102,192),(3,191,103,61),(4,60,104,190),(5,189,105,59),(6,58,106,188),(7,187,107,57),(8,84,108,186),(9,185,109,83),(10,82,110,184),(11,183,111,81),(12,80,112,182),(13,181,85,79),(14,78,86,180),(15,179,87,77),(16,76,88,178),(17,177,89,75),(18,74,90,176),(19,175,91,73),(20,72,92,174),(21,173,93,71),(22,70,94,172),(23,171,95,69),(24,68,96,170),(25,169,97,67),(26,66,98,196),(27,195,99,65),(28,64,100,194),(29,157,210,138),(30,137,211,156),(31,155,212,136),(32,135,213,154),(33,153,214,134),(34,133,215,152),(35,151,216,132),(36,131,217,150),(37,149,218,130),(38,129,219,148),(39,147,220,128),(40,127,221,146),(41,145,222,126),(42,125,223,144),(43,143,224,124),(44,123,197,142),(45,141,198,122),(46,121,199,168),(47,167,200,120),(48,119,201,166),(49,165,202,118),(50,117,203,164),(51,163,204,116),(52,115,205,162),(53,161,206,114),(54,113,207,160),(55,159,208,140),(56,139,209,158)]])

88 conjugacy classes

class 1 2A···2G2H2I2J2K2L2M4A4B4C4D4E···4L4M4N7A7B7C14A···14U14V···14AG28A···28X
order12···222222244444···44477714···1414···1428···28
size11···122222828444414···1428282222···24···44···4

88 irreducible representations

dim111111122222222244
type+++++++++++++-
imageC1C2C2C2C2C2C4D4D4D7C4○D4D14D14C4×D7D28C7⋊D4D4×D7D42D7
kernelC23.45D28C14.C42C2×D14⋊C4C14×C22⋊C4C23×Dic7C22×C7⋊D4C2×C7⋊D4C2×Dic7C22×C14C2×C22⋊C4C2×C14C22×C4C24C23C23C23C22C22
# reps122111844346312121266

Matrix representation of C23.45D28 in GL6(𝔽29)

2800000
0280000
001000
000100
0000280
0000241
,
2800000
0280000
001000
000100
000010
000001
,
100000
010000
001000
000100
0000280
0000028
,
17160000
13190000
00202500
0042100
00001523
00001814
,
22220000
370000
00221900
0028700
0000280
0000028

G:=sub<GL(6,GF(29))| [28,0,0,0,0,0,0,28,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,28,24,0,0,0,0,0,1],[28,0,0,0,0,0,0,28,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,28,0,0,0,0,0,0,28],[17,13,0,0,0,0,16,19,0,0,0,0,0,0,20,4,0,0,0,0,25,21,0,0,0,0,0,0,15,18,0,0,0,0,23,14],[22,3,0,0,0,0,22,7,0,0,0,0,0,0,22,28,0,0,0,0,19,7,0,0,0,0,0,0,28,0,0,0,0,0,0,28] >;

C23.45D28 in GAP, Magma, Sage, TeX

C_2^3._{45}D_{28}
% in TeX

G:=Group("C2^3.45D28");
// GroupNames label

G:=SmallGroup(448,492);
// by ID

G=gap.SmallGroup(448,492);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-7,477,422,387,58,18822]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^2=c^2=d^28=1,e^2=b,a*b=b*a,d*a*d^-1=a*c=c*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e^-1=b*d^-1>;
// generators/relations

׿
×
𝔽